L.Khnisse

Classes 3^{ème}sc

Durée: 3.h

Exercice N°1:(5 pts)

L'espace ξ est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$

On considère les points A (3; -2; 2), B (6; 1; 5), C (6; -2; -1)et D (0; 4; -1).

- 1/ Montrer que le triangle ABC est un triangle rectangle.
- 2/ Soit P le plan d'équation cartésienne : x + y + z 3 = 0. Montrer que P est perpendiculaire à la droite (AB) et passe par le point A.
- 3/ Soit Q le plan perpendiculaire à la droite (AC) et passant par le point A. Montrer qu'une équation cartésienne de Q est : x-z-1=0
- 4/ Soit Δ la droite d'intersection des plans P et Q.
- a) Déterminer une représentation paramétrique de la droite Δ
- b) Vérifier que $D \in \Delta$
- 5/a) Calculer \overrightarrow{DB} . \overrightarrow{DC}
 - b) Montrer que l'angle géométrique BDC a pour mesure $\frac{\pi}{4}$ radians.
- 6/ Soit m un paramètre réel et $R_m: (m+1)x + my + 2mz + 1 = 0$ une famille de plan Déterminer m pour que R_m soit perpendiculaire à Q

Exercice N°2:(5 pts)

Une urne contient deux jetons blancs numérotés 1 ; 2 et trois jetons noirs numérotés 1 ; 1 ; 2.

Tous les jetons sont indiscernables au toucher.

1/ On tire simultanément deux jetons de l'urne.

Calculer la probabilité de chacun des évènements suivants :

A : « obtenir deux jetons de même couleur »

B: « obtenir deux jetons portant le même numéro »

C : « avoir deux jetons de même couleur et portant le même numéro »

D : « avoir deux jetons de même couleur ou portant le même numéro »

2/ On tire successivement et sans remise deux jetons de l'urne.

Soit X le réel égal à la somme des chiffres marqués sur les deux jetons tirés

- a) Déterminer l'ensemble E de valeurs K prises par X
- b) Calculer la probabilité de chacun des évènements $\{X = K\}$
- 3/ On donne la série statistique suivant

X_{i}	2	3	4
$n_{\rm i}$	6	12	2

Calculer : \overline{X} ,la valeur moyenne de X ainsi que $\sigma(X)$ son écart type

Exercice N°3:(5 pts)

Le tableau suivant donne la distance de freinage d (en mètre) d'une voiture, en fonction de sa vitesse v (en kilomètres par heure)

v (km/h)	30	40	50	60	70	80
d (mètres)	42	60	80	90	95	110

- On note v et d les moyennes respectives de v et d.
- On note V(v) et V(d) les variances respectives de v et d.
- $1/\text{ Calculer } \overset{-}{\text{v}}, \overset{-}{\text{d}}, \text{V(v) et V(d)}$
- 2/ Construire le nuage de points associé au couple (v, d) et placer le point moyen G
- 3/ Soit Δ la droite d'ajustement linéaire de : d en v
 - a) Vérifier qu' une équation de la droite Δ est : d = 1, 25.v + 10, 75
 - b) Calculer la distance de freinage lorsque la voiture roule à 100 km/h.
 - c) Calculer la distance de freinage lorsque la voiture roule à 140 km/h.
- 4/ La vitesse de la voiture est de 140 km/h, lorsque le conducteur, roulent suivant une ligne droite, aperçoit un obstacle situé à une distance de 200 mètres.

Pourrait-il alors éviter cet obstacle sachant qu'il met une seconde pour appuyer sur les freins?

Exercice N°4(5 pts)

Soit U la suite définie sur \square par : $\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{5U_n - 3}{U_n + 1} \text{ pour tout } n \in \square \end{cases}$

- 1/a) Vérifier que pour tout n de \Box on a $U_{n+1} = 5 \frac{8}{U_n + 1}$
 - b) Montrer par récurrence que pour tout n de $\square \ : 1 \! < \! U_n \! < \! 3$
- 2/a) Montrer que : $U_{n+1} U_n = \frac{-(U_n 1)(U_n 3)}{U_n + 1}$
 - b) Déduire la variation de U
- 3/ Soit V la suite définie sur \square par : $V_n = \frac{U_n 3}{U_n 1}$
 - a) Montrer que la suite (V_n) est géométrique de raison $q = \frac{1}{2}$
 - b) Exprimer V_n puis U_n en fonction de n
 - c) Calculer les limites des suites V et U